KEY PAPERS

GUIDELINES

UK Thalassaemia Society. Standards for the clinical care of children and adults with Thalassaemia in the UK. 2016. [Link to guideline]

Royal College of Obstetricians and Gynaecologists (UK). Management of Beta Thalassaemia in Pregnancy Green-Top Guideline no. 66. 2014. [Link to guideline]

The Fred Hutchinson Cancer Research Center / Seattle Cancer Care Alliance -Long-term follow-up after hematopoietic stem cell transplant general guidelines for referring physicians (April 2013) [Link to guideline]

University Health Network - Toronto General Hospital. Guidelines for the care of patients in UHN Red Blood Cell Disorders Program. 2012. [Link to guideline]

Northern California Comprehensive Thalassemia Network and Children’s Hospital, Oakland. 2012 Thalassemia Standards of Care Guidelines. [Link to guideline]

Diamond Blackfan Anemia Foundation, Inc. Diamond Blackfan Anemia Chelation Therapy Fact Sheet. [Link to factsheet]

Cooley’s Anemia Foundation. 2012 Position Statement on MRI-Based Hepatic Iron Assessment Methods. [Link to article]

Association of the Scientific Medical Societies in Germany. Guideline for diagnosis and treatment of secondary iron overload in patients with congenital anemias, 2015. [Link to guideline]

ORIGINAL ARTICLES

Vitrano A, et al. Longitudinal changes in LIC and other parameters in patients receiving different chelation regimens: Data from LICNET. *European Journal of Haematology.* 2018 Feb;100(2):124-30. [Link to abstract]

Yassin MA, et al. Statural growth and prevalence of endocrinopathies in relation to liver iron content (LIC) in adult patients with beta thalassemia major (BTM) and sickle cell disease (SCD). *Acta Bio Medica Atenei Parmensis.* 2018 Feb 16;89(2-S):33-40. [Link to full article]

Soliman AT, et al. Final adult height and endocrine complications in young adults with B-thalassemia major (TM) who received oral iron chelation (OIC) in comparison with those who did not use OIC. *Acta Bio Medica Atenei Parmensis.* 2018 Feb 16;89(2-S):27-32. [Link to full article]

Taher, A.T. Clinical utility of serum ferritin thresholds for guiding iron chelation therapy when magnetic resonance imaging is unavailable in patients with non-transfusion-dependent thalassaemias-response to Ang et al. British Journal of Haematology. 2017 Mar 1;176(6):989-90. [Link to full article]

Ho, P.J., et al. Cardiac iron load and function in transfused patients treated with deferasirox (the MILE study). European Journal of Haematology. 2017 Feb 1;98(2):97-105. [Link to abstract]

Porter JB et al. Efficacy and safety of deferasirox at low and high iron burdens: results from the EMIC magnetic resonance imaging sub study. Ann Hematol.2013 Jan;92(2):211-9 [Link to abstract]

Nolte F et al. Results from a 1-year, open-label, single-arm, multi-center trial evaluating the efficacy and safety of oral Deferasirox in patients diagnosed with low and int-1 risk myelodysplastic syndrome (MDS) and transfusion-dependent iron overload. Ann Hematol. 2013 Jan;92(2):191-8 [Link to abstract]

Taher A et al. Importance of optimal dosing ≥30 mg/kg/d during deferasirox treatment: 2.7-yr follow-up from the ESCALATOR study in patients with β-thalassemia. Eur J Haemol. 2011; 87:355-65. [Link to abstract]

Pennell DJ et al. Continued improvement in myocardial T2* over two years of deferasirox therapy in beta-thalassemia major patients with cardiac iron overload. Haematologica. 2011; 96(1):48-54. [Link to abstract]

Patton N et al. Observational study of iron overload as assessed by magnetic resonance imaging (MRI) in an adult population of transfusion dependent patients with beta thalassemia: Significant association between low cardiac T2* < 10 ms and the occurrence of cardiac events. *Intern Med J* 2010; 40: 419-26. [Link to abstract]

Pathare A et al. Deferasirox (Exjade®) significantly improves cardiac T2* in heavily iron-overloaded patients with beta-thalassemia major. *Ann Hematol* 2010; 89(4):405-9. [Link to abstract]

Melis MA et al. A mutation in the TMPRSS6 gene, encoding a transmembrane serine protease that suppresses hepcidin production, in familial iron deficiency anemia refractory to oral iron. *Haematologica* 2008;93(10):1473-1479. [Link to abstract]

Origa R et al. No evidence of cardiac iron in 20 never- or minimally-transfused patients with thalassemia intermedia. *Haematologica* 2008;93(7):1095-1096. [Link to full article]

Taher A et al. Correlation of liver iron concentration determined by R2 magnetic resonance imaging with serum ferritin in patients with thalassemia intermedia. *Haematologica* 2008;93(10):1584-1586. [Link to full text article]

Olynyk JK et al. Duration of hepatic iron exposure increases the risk of significant fibrosis in hereditary hemochromatosis: a new role for magnetic resonance imaging. *Am J Gastroenterol* 2005;100(4):837-841. [Link to abstract]

St Pierre TG et al. Single spin-echo proton transverse relaxometry of iron-loaded liver. *NMR Biomed* 2004;17(7):446-458. [Link to abstract]

Clark PR et al. Bi-exponential proton transverse relaxation rate (R2) image analysis using RF field intensity-weighted spin density projection: potential for R2 measurement of iron-loaded liver. *Magn Reson Imaging* 2003;21(5):519-530. [Link to abstract]

Clark PR et al. Proton transverse relaxation rate (R2) images of liver tissue; mapping local tissue iron concentrations with MRI. *Magn Reson Med.* 2003 Mar;49(3):572-5. [Link to abstract]

EDITORIALS

REVIEW ARTICLES

Ruefer A, et al. Role of liver magnetic resonance imaging in hyperferritinaemia and the diagnosis of iron overload. Swiss Medical Weekly. 2017 Nov 9;147:w14550-. [Link to full article]

Paisant A, et al. MRI for the measurement of liver iron content, and for the diagnosis and follow-up of iron overload disorders. La Presse Médicale. 2017 Dec 1;46(12):e279-87. [Link to abstract]

Alexiou, E. Methodologies and tools used today for measuring iron load. Thalassemia Reports, 2014. 4(3). [Link to full article]

Olivieri, NF and GM Brittenham. Management of the Thalassemias. Cold Spring Harbor Perspectives in Medicine, 2013. 5(6). [Link to full article]

Ware HM, Kwiatkowski JL: Optimal use of iron chelators in pediatric patients. Clinical Advances in Hematology & Oncology 2013, 11:433-441. [Link to full article]

Bird RJ et al. When should iron chelation therapy be considered in patients with myelodysplasia and other bone marrow failure syndromes with iron overload? Internal Medicine Journal. 2012; 42:450-5. [Link to abstract]

Cao A et al. Recent advances in α-thalassemias. Pediatric Reports. 2011; 3:e17. [Link to abstract]

Araujo A et al. Management of transfusional iron overload in Latin America: current outlook and expert panel

Pavenski K et al. The real cost of iron chelation therapy. Transfusion 2007;47(10):1751-1752. [Link to Pubmed listing]

Taher A et al. Deferasirox significantly reduces liver iron concentration in non-transfusion-dependent Thalassaemia patients with iron overload: results from the 1-year randomised, double-blind, placebo-controlled phase II THALASSA study. ASH Annual Meeting. 2011; Abstract 902.

Vasavda N et al. Renal iron load in sickle cell disease correlates with hemolysis and transfusion history, but not with hepatic iron. ASH Annual Meeting. 2011; Abstract 2129.

Inati A et al. Relationship between total iron removed by phlebotomy and iron removed from the liver in pediatric thalassemia major patients following curative stem cell transplant. ASH Annual Meeting. 2011; Abstract 5300.

Kogho Y et al. Deferasirox decreases liver iron concentration (LIC) in transfusional iron overloaded patients with myelodysplastic syndromes (MDS), aplastic anemia (AA) and other rare anemias: Results from 1-year multi-centre, open-label phase II study. ASH Annual Meeting. 2011; Abstract 4838.

Gatterman N et al. Transfused myelodysplastic syndromes (MDS) patients have severe iron overload and relevant improvements in iron burden and liver function with deferasirox treatment: results from a pooled analysis. ASH Annual Meeting. 2011; Abstract 5019.

Cheong J-W et al. Efficacy of ICT with Deferasirox in transfusional iron overload patients with MDS or AA. ASH Annual Meeting Abstract. 2009; Abstract 3810. [Link to abstract]

Pennell D et al. Efficacy and safety of Deferasirox (Exjade®) in β-thalassemia patients with myocardial siderosis - 2 year results from the EPIC cardiac sub-study. ASH Annual Meeting Abstract. 2009; Abstract 4062. [Link to abstract]

Taher A et al. Deferasirox (Exjade®) ≥ 30 mg/kg/day is effective in reducing iron burden in thalassemia major patients previously chelated with monotherapy or combination therapy. ASH Annual Meeting Abstract. 2009; Abstract 4058. [Link to abstract]

Min Y et al. A multi-centre, open label study evaluating the efficacy of iron chelation therapy with deferasirox in transfusional iron overload patients with myelodysplastic syndromes or aplastic anemia using quantitative R2 MRI. Leukaemia Research 33: Supplement 1. 2009:S119-S120.

Capellini M et al. Efficacy and safety of once-daily iron chelator Deferasirox (Exjade®) in a large group of regularly transfused patients with β-thalassemia major. Blood (ASH Annual Meeting Abstracts) 2008; 112: Abstract 3878. [Link to abstract]

Taher A et al. Deferasirox (Exjade®) treatment in pediatric β-thalassemia patients with high iron burden: 2.8 years results from ESCALATOR trial. Blood (ASH Annual Meeting Abstracts) 2008; 112: Abstract 3879. [Link to abstract]

Taher A et al. Efficacy and safety of once-daily oral deferasirox (Exjade®) during a median of 2.7 years of treatment in heavily iron-overloaded patients with β-thalassemia. Blood (ASH Annual Meeting Abstracts) 2008; 112: Abstract 5409. [Link to abstract]

Porter J et al. Effect of Deferasirox (Exjade®) on labile plasma iron levels in heavily iron-overloaded patients with transfusion-dependent anemias enrolled in the large-scale, prospective, 1-year EPIC trial. Blood (ASH Annual Meeting Abstracts) 2008; 112: Abstract 3881. [Link to abstract]

Pennell D et al. Efficacy and safety of Deferasirox (Exjade®) in reducing cardiac iron in patients with β-thalassemia major: Results from the cardiac substudy of the EPIC trial. Blood (ASH Annual Meeting Abstracts) 2008; 112: Abstract 3873. [Link to abstract]

Pennell D et al. Efficacy and safety of Deferasirox (Exjade®) in preventing cardiac iron in patients with normal baseline cardiac iron: Results from the cardiac substudy of the EPIC trial. Blood (ASH Annual Meeting Abstracts) 2008; 112: Abstract 3874. [Link to abstract]

Gatterman N et al. Efficacy and safety of Deferasirox (Exjade®) during 1 year of treatment in transfusion-dependent patients with myelodysplastic syndromes: Results from EPIC trial. Blood (ASH Annual Meeting Abstracts) 2008; 112: Abstract 633. [Link to abstract]

Greenberg P et al. Change in liver iron concentration (LIC), serum ferritin (SF) and labile plasma iron (LPI) over 1 year of Deferasirox (DFX/Exjade®) therapy in a cohort of myelodysplastic patients. Blood (ASH Annual Meeting Abstracts) 2008; 112: Abstract 5083. [Link to abstract]

Piga A et al. Comparison of LIC obtained from biopsy, BLS and R2-MRI in iron overloaded patients with beta-thalassemia, treated with Deferasirox (Exjade(R)), ICL670. Blood (ASH Annual Meeting Abstracts) 2005; 106: Abstract 2689. [Link to abstract]